22 research outputs found

    Dead code elimination based pointer analysis for multithreaded programs

    Get PDF
    This paper presents a new approach for optimizing multitheaded programs with pointer constructs. The approach has applications in the area of certified code (proof-carrying code) where a justification or a proof for the correctness of each optimization is required. The optimization meant here is that of dead code elimination. Towards optimizing multithreaded programs the paper presents a new operational semantics for parallel constructs like join-fork constructs, parallel loops, and conditionally spawned threads. The paper also presents a novel type system for flow-sensitive pointer analysis of multithreaded programs. This type system is extended to obtain a new type system for live-variables analysis of multithreaded programs. The live-variables type system is extended to build the third novel type system, proposed in this paper, which carries the optimization of dead code elimination. The justification mentioned above takes the form of type derivation in our approach.Comment: 19 page

    Probabilistic pointer analysis for multithreaded programs

    Full text link
    The use of pointers and data-structures based on pointers results in circular memory references that are interpreted by a vital compiler analysis, namely pointer analysis. For a pair of memory references at a program point, a typical pointer analysis specifies if the points-to relation between them may exist, definitely does not exist, or definitely exists. The "may be" case, which describes the points-to relation for most of the pairs, cannot be dealt with by most compiler optimizations. This is so to guarantee the soundness of these optimizations. However, the "may be" case can be capitalized by the modern class of speculative optimizations if the probability that two memory references alias can be measured. Focusing on multithreading, a prevailing technique of programming, this paper presents a new flow-sensitive technique for probabilistic pointer analysis of multithreaded programs. The proposed technique has the form of a type system and calculates the probability of every points-to relation at each program point. The key to our approach is to calculate the points-to information via a post-type derivation. The use of type systems has the advantage of associating each analysis results with a justification (proof) for the correctness of the results. This justification has the form of a type derivation and is very much required in applications like certified code.Comment: 12 page
    corecore